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We study numerically the magnetic susceptibility of the hierarchical model with 
Ising spins (a = + 1) above the critical temperature and for two values of the 
epsilon parameter. The integrations are performed exactly using recursive 
methods which exploit the symmetries of the model. Lattices with up to 2 ~8 sites 
have been used. Surprisingly, the numerical data can be fitted very well with a 
simple power law of the form (1-fl/flo) -g for the whole temperature range 
considered. This approximate law implies a simple approximate formula for 
the coefficients of the high-temperature expansion, and, more importantly, 
approximate relations among the coefficients themselves. We found that some of 
these approximate relations hold with errors less then 2%. On the other hand, 
g differs significantly from the critical exponent ~ calculated with the epsilon 
expansion, even when the fit is restricted to intervals closer to tic. We discuss 
this discrepancy in the context the renormalization group analysis of the 
hierarchical model. 

KEY WORDS: Renormalization group; critical exponents; hierarchical 
models; high-temperature expansion; Ising models; epsilon expansion. 

1. INTRODUCTION 

The renormalization group (RG) method ~tl is a powerful tool to handle 
critical phenomena and to approach the continuum limit of lattice models. 
H o w e v e r ,  its prac t ica l  i m p l e m e n t a t i o n  usual ly  requires  app rox ima t ions .  In  

his o r ig ina l  paper ,  Wi l son  m a d e  o r d e r - o f - m a g n i t u d e  es t imates  of  va r ious  

te rms  con t r i bu t i ng  to the pa r t i t ion  funct ion  of  the L a n d a u - G i n z b u r g  

m o d e l  and  de r ived  the so-cal led a p p r o x i m a t e  recurs ion  f o r m u l a )  tl In this 

a p p r o x i m a t i o n ,  the R G  t r a n s f o r m a t i o n  is reduced  to a single integral  equa-  

t ion which  caia be s tud ied  using numer ica l  m e t h o d s  or  funct ional  analysis. 
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Recursion formulas closely related to the approximate recursion for- 
mula hold exactly for the hierarchical models. ~-'~ This is due to the large 
group of symmetries of the Hamiltonians of these models. The RG trans- 
formation for these models has been studied in great detail and rigorous 
results concerning the epsilon expansion of the critical exponents are 
available in the literature. 13-5) 

The fact that the RG transformation can be handled easily for 
hierarchical models suggests the use of these models as an approximation ~61 
for nearest-neighbor models. The main technical problems in proceeding 
this way are how to derive explicitly the approximate models and how to 
improve systematically the approximation. Recently, one of us 17~ has 
answered these questions for the Gaussian models where everything can be 
calculated explicitly. In order to extend this method to interacting models, 
one should be able to calculate the average value of perturbation terms 
added to the hierarchical Hamiltonian. For Ising models, where the spin a 
takes only the values + 1, this task can be carried out numerically in an 
efficient way. It has also been suggested 181 that such an approach might 
shed some light on Polyakov's conjecture ~9) for the 3D Ising model. In 
preparation for these calculations, we first checked the agreement between 
the numerical calculations for the (unperturbed) hierarchical Ising model 
and analytical results. In doing so, we found surprising results which are 
reported in the following. 

In this paper, we calculate numerically the magnetic susceptibility per 
site--the susceptibility for shor t - -of  the hierarchical lsing model as a func- 
tion of the temperature and for two values (0 and 1) of e, the parameter 
used in the e-expansion. Calculations have been carried with up to 218 sites. 
The numerical integration made use of the symmetries of the model in 
order to cut down the time of computation logarithmically. However, no 
approximations have been made and the numbers shown below are exact 
up to roundoff errors. These errors were analyzed by changing from simple 
to double precision. In all the cases considered, this only affected the fifth 
significant digit of the susceptibility in the worse cases. Our calculations 
have been mostly restricted to the high-temperature region and its 
boundary. In other words, the parameter /3, proportional to the inverse 
temperature, will run between 0 and a critical value /~c. However, at the 
beginning, a few calculations will be made in the low-temperature region in 
order to locate/~c- 

Surprisingly, we found that the numerical data can be fitted very 
precisely with a simple power law of the form (1-/3///0) -~ in the whole 
high-temperature region, i.e., for/~ e [0,/~,.). As a consequence, it is possible 
to obtain a simple approximate formula for the high-temperature coef- 
ficients of the susceptibility in terms of g and/~0. This approximate formula 
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implies approximate relations among the coefficients themselves. We have 
checked analytically that in the infinite-volume limit one of these relations 
stays approximate with relative errors on the order of 2 %. On the other 
hand, the values of g obtained numerically differ significantly from the 
values of the critical exponent y obtained in the e-expansion. This 
discrepancy slightly diminishes, but remains significant when fits are 
performed over an appropriate subinterval of the form [flmi,,fl,.)" 
This means that for one reason or another, we never get close enough to 
Wilson's fixed point where the e-expansion is valid. The most plausible 
explanation suggested by the RG analysis is that near tic, the approach of 
the fixed point is very slow and 16 or 17 iterations are not enough to 
obtain accurate information concerning the critical behavior. An 
alternative explanation could be the existence of another fixed point 
distinct from Wilson's fixed point. However, we are not aware of any result 
favoring such an outcome. 

This paper is organized as follows. In Section 2, we introduce the 
hierarchical model and the numerical method of integration. In Section 3, 
we check the scaling laws for the variance of the total spin and we deter- 
mine tic- In Section 4, we analyze the temperature dependence of the 
susceptibility and we show that the data can be fitted very well with a 
simple power law. We compare these results with the high-temperature 
expansion (Section 5) and the e-expansion (Section 6). Finally, we discuss 
our present understanding of the results in the conclusions. 

2. THE H IERARCHICAL ISlNG M O D E L  

In this section we describe the hierarchical Ising model and the basic 
ideas of the numerical calculation performed. Hierarchical models (2) are 
specified by a nonlocal Hamiltonian bilinear in the spin variables and a 
local measure of integration. We consider here the case of an Ising 
measure, where the spins take only the values __+1. The nonlocal 
Hamiltonian transforms in a simple way under an RG transformation and 
the transformation only affects the measure of integration. 

In order to facilitate reading of the rest of this paper, let us first recall 
the form of the nonlocal Hamiltonian of the hierarchical model and some 
of the remarkable properties associated with it. The main purpose of this 
paragraph is to motivate Eqs. (2.1) and (2.4). For convenience, we label the 
sites with n ind.ices i ....... il, each index being 1 or 2. In order to visualize 
the meaning of this notation, one can divide the 2" sites into two boxes, 
each containing 2" -  J sites. If i, = 1, the site is in the first box; if i, = 2, the 
site is in the second box. Repeating this procedure n times (for the two 
boxes, their respective two subboxes, etc.), we obtain an unambiguous 
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labeling for each of the sites. Two sites differing only by ii are in the same 
box of size 2. The hierarchical Hamiltonian, written in Eq. (2.1) below, 
depends only on Si,,,....j2=tri,,,....i2.t+tri,,.....iz-, and plays no rule when we 
integrate over the spins while keeping the Si ...... ,., constant. After performing 
this integration, we consider Si,,.....i, as a new local variable and we reabsorb 
the local part (in the new variable) of the Hamiltonian into the new local 
measure [see Eq. (2.4) below]. The procedure can be repeated and sum- 
marized with a simple recursion formula provided that we couple all the 
spins located at sites within a box of size 2 t with the same strength (c/4)( 
This property characterizes the Hamiltonian of a hierarchical model with 
2" sites, which reads 

' (4) '  ...... u= --S iE E o,, (2.1) 
' n . . . - ,  " " , . - - .  " = t I I +  I I!  I I 

The model has a free parameter c for which we shall use the 
parametrization 

c=21-2/~ (2.2) 

The parameter of the epsilon expansion will be defined as 

e = 4 - D (2.3) 

This choice has been justified in ref. 8, but different conventions exist in the 
literature. The fact that the nontrivial fixed point of the RG transformation 
merges into the Gaussian fixed point when D reaches 4 from below is 
explained at length in refs. 3, 5, and 6. On the other hand, the model has 
no second-order phase transition for D~< 2. ~2~ These two results can be 
understood heuristically from the result ~'~ that 2/D is the Hausdorff 
dimension of the random walk associated with the kernel of the 
Hamiltonian (2.1). When D > 4, the Hausdorff dimension is less than one- 
half of the dimension of the space and self-intersections of random paths is 
unlikely. When D < 2, the Hausdorff dimension is larger than the dimen- 
sion of the space and the model has only a high-temperature phase. In the 
actual calculations reported below, we have selected the values 0 and 1 
for e. 

We are interested in calculating the magnetic susceptibility of the 
hierarchical Ising model. This quantity can be calculated easily if we know 
the probability for the total spin, denoted P,,(S). This probability is 
obviously /~-dependent, even though we shall not write it explicitly. This 
probability will be calculated recursively using the RG method without a 
rescaling of the spins. We first integrate the spins inside boxes of size 2, 
keeping the sum of the spins in each box constant. We then include the 
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terms with l =  1 in (2.1) in a new local measure for these sums. We repeat 
this procedure n times and obtain a measure for the total spin which can 
be normalized as a probability. Note that a choice of indices i ...... 6+ t com- 
pletely specifies a box of size 21 with the subdivision described above. 
Generalizing the notation used at the beginning of this section, we call the 
sum of the spin inside this box S~,.....~,+,. It can take all the even values 
between - 2  ~ and 2 ~. Obviously, S;,...../~+ , =  S~,.....o ̀ ,. ~+ S;,,....0§ 2. With these 
notations, the recursion formula reads 

Pl+l (S i  ...... o+,)=C1+~ Exp fl (S;,.....0+,) 2 

y. 
Sin,....il+ I =Sin , . . . , i l+ l , l  + Sin.....il + l . 2  

PI(Si,.....i,§ l) PI(Si,,.....i,+,.2) 

(2.4) 

The constant C/+~ is adjusted in such a way that the sum of the 
probabilities is 1. Strictly speaking, it is not necessary to impose such a 
normalization during the intermediate steps o f the  calculation; however, it 
keeps the numbers reasonably small. 

Note also that the spin variables are not rescaled in Eq. (2.4) because 
we are interested in calculating average values involving the original spin 
variables. However, it is straightforward to reabsorb each time a factor 
(c/4) 1/2 in the spin variables and, at the same time, to obtain a regular RG 
transformation from Eq. (2.4). It is important to notice that if we drop the 
1= 1 part of the Hamiltonian (2.1), which is local in the new variable 
Si,....,;2, and if we reabsorb a factor (c/4) ~/2 in S;,...i2, then the Hamiltonian 
is invariant (in the thermodynamic limit). This property will be used in the 
next section. 

The recursion formula (2.4) has been implemented with a computer 
program. In order to calculate P, (S ) ,  we have to repeat 2" times a calcula- 
tion involving roughly 2" operations. Consequently, the time necessary to 
calculate P,,(S) scales approximately like 4". With the fastest computer 
at our disposal, a DEC alpha 3000/400, it takes about 10min to 
calculate Pt7(S) from PI6(S) when programmed with simple precision in 
FORTRAN. 

Due to the size of the calculation, it is clearly necessary to check for 
roundoff errors. We have studied the size of these errors by repeating the 
calculation with double precision instead of simple precision for a large 
sample of values of ft. For n up to 16, we have found very good agreement 
between the two calculations, the differences showing up in the sixth signifi- 
cant digit of the susceptibility. Differences in the fifth digits were observed 
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for n =  17 and 18. Calculations for n =  19 and beyond have shown less 
stability, require a lot of computer time, and will not be reported here. 

The main quantity of interest for us is the average of the square of the 
total spin, denoted X,,(fl) and defined as 

x,,([J) = y~ e , , ( s ) s  2 (2.5) 
S 

Above the critical temperature, this quantity divided by the number of 
sites has a finite thermodynamic limit. It will be called the magnetic 
susceptibility per site and denoted Z,,(fl), 

x,,(/~) 
g"(/~) = 2" (2.6) 

3. THE SCALING LAWS AND THE DETERMINATION OF Pc 

The RG method has definite predictions ~5' ~ for the large-n behavior 
of X,,. In the following we shall recall the main results and show that our 
numerical calculations reproduce these results with good precision. The 
case D = 3 will be discussed in complete detail, while the results for D = 4 
will only be briefly commented upon. 

It is convenient to express X,, as a power of the square of the number 
of sites, namely 

X,,(fl)= 2 2,''~ (3.1) 

We could have included a constant of proportionality in this definition; 
however, the practical advantage of Eq. (3.1) is that ~o(/~,n) can be 
obtained immediately from the numerical value of X,,(p). The disadvantage 
of this definition is that the n dependence of co(/3, n) is more important than 
if we had introduced a proportionality constant. However, we shall 
ultimately consider the ratios X,,+~(fl)/X,(fl) and the determination of a 
constant of proportionality can be bypassed. 

The theoretical value of og(fl, n) can be easily estimated for large or 
small values of ft. For large values of fl, all the spins tend to align and 
co(fl, n) gets close to 1. For small values of fl, the spins at different sites 
become uncorrelated and the variance of the total spin can be 
approximated by the sum of the individual variances. In other words, 
X,,(fl) scales like the number of sites and r n) gets close to 1/2. For large 
n, ~o(fl, n) is attracted by 1 if fl exceeds a critical value denoted fl,. (low- 
temperature regime), and by 1/2 if fl is less than fl,. (high-temperature 
regime). When fl is exactly tic, og(fl, n) tends to a value between 1 and 1/2 
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called co,.. In this case, for n large enough, the local measure tends to a 
nontrivial fixed point. Remarkably,  the value of o9~ can be calculated 
exactly. ~SJ This can be derived from the fact discussed in the previous 
section that  if we reabsorb a factor (c/4)~/2=2 -1~/2§ in the new spin 
variable the new Hamil tonian  is the same as the initial Hamil tonian  (in the 
thermodynamic  limit). This together with the fact that the measure 
approaches  a fixed point  implies that  X ,+  t(fl, .)= (4/c)X,(fl,.).  Compar ing  
with (3.1), we obtain 09,. = 1/2 + 1/D. 

We shall now illustrate these results and estimate fl,. for D =  3. In 
order to get a rough idea of the value of fl,., we have plotted in Fig. 1 the 
trajectories og(fl, n) from n = l  to n = 1 6  and for f l=0 .1 ,0 .2  ..... 1.6. It 
appears  clearly that  the separat ion between the two domains  of at traction 
occurs for a value of/3 between 1.1 and 1.2. We have repeated this calcula- 
tion for fl = 1.10, 1.1 1 ..... 1.20 as shown in Fig. 2. This restricts /3~ to the 
interval [1.17, 1.19-1. At this point, it is more informative to consider ratios 
of susceptibilities at two successive values of n, because this quanti ty is 
independent of the constant  of proport ional i ty  which we could have intro- 
duced in Eq. (3.1). Remember ing  that  L, denotes the susceptibility per site 
[see Eq. (2.6)] and using Eq. (3.1) with co,., we obtain 

(X,, + ,(fl,.)'~ _ 2 (3.2) ,lim Log_, \  ~,(fl--~.).j D 

Figure 3 displays Log2(x,+ ~(fl)/X,,(fl)) for three values of fl and for n up 
to 17. For  fl = 1.179, this quanti ty stays within 1% of the critical value 2/3 
for the last six iterations. If fl is increased or decreased by 0.001, the same 

Fig. 1. 

09 

~ 0 8  

c 

3 
07 

0 6  

b5 

. . . .  i . . . .  1 . . . .  r 

a 10  15 

co(n, fl) versus n for D = 3 and values of fl going from 0.1 to 1.6 by steps of 0.1. 

822/77/3-4-7 



614 M e u r i c e  et  al.  

Fig .  2. 
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re(n,  fl) v e r s u s  n fo r  1 ) = 3  and values off i  going from 1.1 to 1.2 by steps o f  0.01.  

quantity departs by about 10% from 2/3 when n = 17. From this, we con- 
elude that 1.179 approximates fl,. with a precision better than 0.001. It is 
important to notice that this determination does not depend on the maxi- 
mal value of n used, since the bifurcation will persist for larger n. 

Applying the same procedure for D = 4, we found that /~c should be 
inside the interval [0.66, 0.67]. Figure 4 shows that 0.665 approximates tic 
with a precision better than 0.001. 

Fig.  3. 
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Fig. 4. 
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Log ,  of the rat io of two successive values of the susceptibi l i ty for D = 4 and for 
/~ = 0.6645, 0.6655, and  0.6665. 

4. FITTING THE N U M E R I C A L  DATA WITH A 
SIMPLE POWER LAW 

In this section, we report our  numerical results concerning the fl 
dependence of the magnetic susceptibility per site at D = 3 and D = 4 and 
for p < tie. Again, we start with the case D = 3 and discuss it in detail, while 
the case D = 4 will be presented more rapidly later in this section. The 
interpretation of these results is discussed in the next sections. 

We have calculated X,,(fl) for D = 3 and n up to 16 and for values of 
fl between 0 and 1.18 separated by intervals of length 0.01. As expected, the 
susceptibility rises sharply when fl gets close to 1.18. We have displayed the 
results for n =  16 and /~< 1.1 in Fig. 5. Results for n =  14 or n =  15 would 
have been hardly distinguishable from n = 16 on a graph of this size. On 
the other hand, the n dependence becomes more notable when fl is closer 
to its critical value, as shown in Fig. 6, which also includes results for 
n = 17. Except for the difference of scales, the resemblance between Figs. 5 
and 6 is striking. This can be understood from the fact that the numerical 
data can be fitted very precisely with a simple power law of the form 

X, , ( f l )  = (1 -/~//~o) - g  ( 4 . 1 )  

in the whole interval to,/~c). In order to justify this claim, we first notice 
that (4.1) implies the inverse logarithmic derivative of the susceptibility is 
a linear function, namely 

b }' d Log[g,(/~)] = ( g ) - '  (/~0-/~) (4.2) 
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Fig. 5. 
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We now approximate this inverse logarithmic derivative by 

a# a# 
(4.3) 

a Log[z,,tfl + a f t / 2 ) ]  - LogEz.( # + a p t ) ]  - Log[z.(fl)] 

with a3=O.O1, the interval used here. This function is plotted in Fig. 7 for 
n = 16. Remarkably, the numerical data are barely distinguishable from the 
least square linear fit 

afl/a Log[z~6(f l ) ]  -- 0.80839 - 0.67843fl (4.4) 
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Fig. 6. The magnetic susceptibility for D =  3, n = 14, 15, 16, and 17, and values of fl going 
from 1.00 to 1.17 by steps of 0.01. 
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Fig. 7. 
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A discrete  version of  the inverse l oga r i t hmic  der iva t ive  of the susceptibi l i ty a n d  its 
l inear  fit for  D = 3 a n d  n = 16. 

Identifying Eqs. (4.2) and (4.4) yields g = 1.4740 and/70 = 1.1916. The value 
of/7o is close to the volume-independent result//r = 1.I79 obtained in the 
previous section. The value of g obtained above will be compared with 
analytical results in the next two sections. 

The graphs for n = 14 or 15 look almost identical. The linear fits are, 
respectively, 

A~IA Log[z~5(//)] = 0.80849 - 0.67712// 
(4.5) 

A///~ Log[x 14(//)] = 0.80867 -- 0.67508fl 

For those who would attempt to reproduce these results with five signifi- 
cant figures, we mention that the fits have been done without including 
1.18, which is clearly above//c .  The change in the fit when the interval is 
restricted to a subinterval is discussed in detail in the next two sections. 

In order to see the corrections to the linear behavior, we have plotted 
in Fig. 8 the difference between the linear fit and the data, denoted E(//), 
for n = 14, 15, and 16. These difference are not larger than 0.003 in absolute 
values and have interesting regularities which will be discussed at the end 
of this section. 

We have intentionally used simple-precision data to plot Fig. 8 in 
order to give. an idea of the roundoff errors of the method. Small 
irregularities are visible especially in the low-// region, where their typical 
size is 10 -4. On the other hand, E(//) is smoother for/7 > 0.8. The size of 
these numerical errors is compatible with the claim made in Section 2 that 
numerical errors affect only the sixth significant digit of the susceptibility. 
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Fig. 8. 
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Difference between the discrete version of the inverse logarithmic derivative of the 
susceptibility and its linear fit for D=3  and n= 14, 15, and 16. 

Indeed, if one of the Z,, is replaced by (I + ~5)Z, , in Eq. (4.3), this creates an 
error 6 A ~ / [ A  L o g ( z ) ]  2. A simple inspection shows  that 6 can be amplified 
by a factor of order 100 if p is not too close to fl~. 

We have also considered the calculation of the quantity in Eq. (4.3) 
with smaller values of A~, namely 10 -3 and 10 -4. This study yielded no 
new information in particular in small regions near ~,.. 

A similar procedure has been followed for D = 4. In Fig. 9 we display 
the quantity d ~ / d  Log[z t6 ( f l ) ] .  Again the departures from linearity are 

to  
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Fig. 9. A discrete version of the inverse logarithmic derivative of the susceptibility and its 
linear fit for D = 4  and n= 16. 
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Fig. 10. 
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Difference between the discrete version of the inverse logar i thmic  der ivat ive of the 
susceptibi l i ty and its l inear  fit for D = 4  and n =  14, 15, and 16. 

small and the changes in the coefficients of the linear fit for n = 14 and 15 
are of the same order as those for D = 3. The difference between the linear 
fit and the data for n = 14, 15, and 16 is displayed in Fig. 10. For further 
comparison, a fit over the whole interval for n = 16 yields g = 1.2568 and 
/~o = 0.6803. 

Figures 8 and 10 show that the differences between the fit and the data 
are larger near 0 and /~c. In both regions, the data are below the fit in 
Figs. 7 and 9. In the high-temperature region, the fit (made over the whole 
interval), overestimates the absolute value of the slope of the data. In the 
critical region, the situation is more complicated and will be discussed in 
more detail in Section 6. Figures 8 and 10 also show that in both the high- 
temperature and the critical region the differences between the fit and the 
data increase slightly with n. 

5. C O M P A R I S O N  WITH THE H I G H - T E M P E R A T U R E  
EXPANSION 

Up to now, we have shown that at finite, but by no means small, 
volume, the power behavior of the magnetic susceptibility is very similar in 
the high-temperature region and in the critical region. The fact that the dis- 
crepancy between Eq. (4.1) and the data is small but significantly nonzero 
shows that Eq. (4.1) is in general not exact at finite volume. At the end of 
this section, we shall show that Eq. (4.1) is not exact in the infinite-volume 
limit, by calculating three terms in the high-temperature expansion of the 
susceptibility. This means that, despite the remarkable linear behavior 
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appearing in Figs. 8 and 10, there are no special reasons to use the whole 
interval [0, tic) in order to obtain precise results concerning the high- 
temperature behavior of the susceptibility. 

The high-temperature expansion of the susceptibility reads 

X,,(fl)= 1 + b~j.,afl + b~2.,,~fl2 + .. .  (5.1) 

Despite the nonlocality of the model, the two first coefficients can be writ- 
ten in terms of truncated geometrical series�9 A straightforward but tedious 
calculation yields 

I - C n 

�9 = - 1 1 - (5.2a) 4) 
and 

(4){(4)( 
_ 2 "J - - 1  

b~2.,,~ = (btl.,,i) 2 -- 1 -- 1 -- 1 -- 

2 C n I 1 

- - ( 5 . 2 b )  - 2 ( 4 )  "+ [1 ( ~ ) ] ( 1 - 2 ) -  ( 2 " - 1 ) ( 4 )  2('+ )} 

On the other hand, the parametrization of the susceptibility (4�9 has the 
high-temperature expansion 

flo 2flo 

We now compare the two first coefficients of Eqs. (5.1) and (5.3) in the 
case n = 16 and D = 3. If we use the values of g and flo obtained from a fit 
over the whole interval given in Eq. (4.4), we obtain g/fl0 = 1.2370, while 
from Eq. (5.2) we obtain b~, ,6~= 1.2415551. Similarly for the second coef- 
ficient, we obtain g ( g +  1)/2flo2=1.2842 and b~2.~6)= 1.2776946. In both 
cases, the numbers agree within less than 0.01. As one could expect, a 
better agreement with the high-temperature expansion can be reached by 
restricting the fit to the high-temperature region. For  instance, if we use the 
interval [0, 0.1] to perform the fit, we obtain flo = 1.21705 and g =  1.51091, 
which implies g/flo = 1.2415 and g(g  + l)/2flo = 1.2806. 

On the other hand, it is also possible to obtain approximate values for 
g and flo by comparing the two first terms of Eqs. (5.1) and (5.3). Solving 
g/ f lo  = b~t,nl together with g(g  + 1)/2flo 2 = b(2.,,) , we obtain 

(2bl2 ,,, ) - '  
g-- -  , z 7  = -  1 

(5.4) 
(2b~2�9  

flo = ", b~l.,, ~ 
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In the case n = 16, D = 3, we obtain g = 1.5203 and flo = 1.2245, which differ 
by about 0.01 from the corresponding values obtained from the restricted 
fit and by less than 0.05 from one obtained from the whole-interval fit. 
The main interest of this approach is that we can prove that Eq. (4.1) is 
not exact even for arbitrarily large n. For Eq. (4.1) to be exact, we need all 
the terms of Eqs. (5.1) and (5.3) to match. Equation (5.4) guarantees the 
matching of the first two terms. At third order the matching requires 
g ( g + l ) ( g + 2 ) / 6 f l  3= b(3.,,p Plugging the values of g and flo obtained in 
Eq. (5.4), we obtain the relation 

b~3,,j-bc2'"~( 4b(2""j b~.,,~) ( 5 . 5 )  
�9 3 \ b~l . ,~  

Due to the nonlocality of the model, the calculation of b~3.,,) has a dif- 
ficulty comparable with the calculation of a one-loop Feynman diagram. 
The methods used will be reported elsewhere, tlS~ The results has been 
checked with two independent methods. The main result is that Eq. (5.5) 
is not exact. The difference between the value of b(3.n ) given by Eq. (5.4) 
and the actual value is small, decreases with n, but finally stabilizes at 
-0.02122 for n > 30. It is nevertheless remarkable that approximate rela- 
tions among the high-temperature coefficients can be found. The deep 
reason for these approximate relations remains to be understood. 

We have performed a similar analysis in the case D = 4 and observed 
essentially the same features as in the case D = 3. In particular, we obtain 
that the actual value of b~3., ~ is 4.8517065, while the value obtained from 
Eq. (5.5) is 4.797958. The difference between the two values is less than 2% 
of b3.,. 

In conclusion, our numerical calculation has shed new light on the 
high-temperature expansion of the hierarchical model. It reveals 
approximate relations among the coefficients. We also found that Eq. (4.1) 
is not exact in the infinite-volume limit and consequently cannot be used 
to obtain a precise estimate of the critical exponent y. The conventional 
high-temperature calculation of the critical exponents tl2~ requires a larger 
number of coefficients than what is presently available to us. In the case of 
the critical exponents of the nearest-neighbor Ising models, small dis- 
crepancies between high-temperature and RG calculations have been 
noticed in the past (see ref. 13 for references to the vast literature on this 
subject). Several authors t~41 have shown that these discrepancies can be 
removed by an appropriate treatment of the confluent singularities. We are 
planning to investigate this issue in the present case. 



622 Meurice et  al.  

6. C O M P A R I S O N  W I T H  THE EPSILON E X P A N S I O N  

The critical exponents of the hierarchical model near Wilson's non- 
trivial fixed point can be calculated using the e-expansion. Near this fixed 
point, the linearized RG transformation is dominated by its two largest 
eigenvalues, )-1 and 22. The critical index 7 depends only on 21 and reads 

Log(2/c) 
? =  Log(2~) (6.1) 

This definition has been carefully justified in refs. 3 and 5. We give here a 
quick explanation. The susceptibility per site with 2" sites is equal to 2/c 
(see Section 3) times the susceptibility per sites calculated with 2"-~ sites 
but with f l - t i c  multiplied by 21 (this follows from a more detailed argu- 
ment). This implies that 2~ = 2/c, which is equivalent to Eq. (6.1). Instead, 
if fl = tic, the susceptibility per sites is multiplied by 2/c = 22m with no 
change in temperature and we obtain the critical scaling law (3.2). 

With the convention of Eq. (2.2), one obtains at first order in e 

(log 21 
,;t~ = x/~ + e 24 

(log 2) (6.2) 
h E = l - - e - -  

4 

In the case D = 4, the exact values are obtained by setting e=  0 in the 
above equations, which implies 7 = 1. In the case D =  3, more accurate 
calculations are available in the literature. An elaborate resummation 
method ~41 yields 2, = 1.427, which implies ? = 1.300. This numerical value 
agrees with the results obtained from a numerical analysis of the recursion 
formula given by Bleher in the second appendix of ref. 3. In addition, this 
numerical analysis provides the approximate value 22 = 0.85. 

It is clear that the values g = 1.474 (1.257 resp.) obtained from a whole 
interval fit in the case D =  3 (D---4 resp.), n =  16 differs significantly from 
? =  1.300 (1.000 resp.). However, as explained in the previous section, 
Eq. (4.1) is only an approximate formula and despite the good-looking 
linear behavior shown by Figs. 7 and 9, there are no special reasons to 
use the whole interval to obtain precise values characterizing the critical 
behavior. We have thus repeated the fitting procedure over intervals 
[flmin, tic) varying flmin from 0 to values close to tic. The results are dis- 
played in Fig. l l  for D =  3 and Fig. 12 for D = 4 .  These graphs show that 
by reducing the interval where the linear fit is performed, we can obtain 
values of g which are closer to the value of ? predicted by the e-expansion. 
For instance, in the case D = 3 and n = 16, if we only consider the interval 



Numerical Study of Hierarchical Ising Model 623 

I I I I I '~ I 

0 = 3  

�9 n = 1 4  0 

O n =  15 

= n = 1 6  0 

t ~  

." 0 

O~ " 0 

,.....~176 ~ - 
0 O  ,..........~ 0 

,.s ..... ,.... . '  
�9 ....,.. .- 

, I , I . I , I , . . . . .  I I 

0.2 0.4 0.6 0.8 1 1.2 

~ m i n  

Fig. 11. Numerical estimation o f g  for D = 3  and n between 14 and 16, when the fit is 
restricted to the interval [Pmi., ~r). 

[0.97, 1.17-1, we obtain g =  1.4518. In the case D = 3 and n = 17, we obtain 
g =  1.4370 for the interval [1.00, 1.17-1. These values of g differ more 
significantly from the typical value g = 1.51 obtained in the high-temperature 
region but are still far away from 1.300. Importantly, we see that if we 
adjust the interval in order to get the lowest possible value of g, we obtain 
values which decrease much more rapidly with n than the values obtained 
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Fig. 12. Numerical estimation of g for D = 4  and n between 14 and 16, when the fit is 
restricted to the interval [~,.in, ~ ) '  
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from a whole-interval fit, the latter being "stabilized" by the high- 
temperature region. 

On the other hand, if we consider intervals closer and closer to fl,, the 
value of g starts rising. This comes from the fact that at finite volume, it 
is impossible to obtain a true singularity. Consequently, the absolute value 
of the slope starts decreasing when fl gets too close to tic. From Eq. (4.2), 
this means that g starts increasing. This effect is barely visible in Figs. 7 and 
9, but becomes more obvious if we plot a few points above fl,.. This 
indicates that even though we have used lattices with up to 217= 131,072 
sites, we do not probe accurately the critical region. 

The possibility that a larger number of iterations is necessary to obtain 
accurate results concerning the critical behavior is supported by the RG 
analysis. The fact that the second eigenvalue 22 is close to ! (0.85, see 
above) in the case D = 3 suggests that the approach of the nontrivial fixed 
point or more generally of the unstable manifold can be rather slow 
[(0.85)J7=0.063]. The situation is worse in the case D = 4 ,  where 22 is 
exactly 1. 

It seems thus prematurate to conclude that the difference between our 
numerical results and the e-expansion is significant. This issue can only be 
settled by using approximate algorithms which would allow one to perform 
a much larger number of iterations. 

7. C O N C L U S I O N S  

We have studied the magnetic susceptibility per site of the hierarchical 
lsing model for e = 1 and 0. We found that the ~ dependence of this quan- 
tity could be fitted quite accurately with a simple power law. Our analysis 
of the high-temperature expansion proved that this power law is not exact. 
This approximate law implies a simple approximate formula for the 
coefficients of the high-temperature expansion, and, more importantly, 
approximate relations among the coefficients themselves. We found that the 
simplest of these relations is satisfied with relative errors less then 2% in 
the two cases considered. These approximate relations mean that special 
combinations of high-temperature graphs are quite small. We are presently 
trying to get a systematic understanding of this situation. This task is made 
difficult by the fact that, due to the noniocality of the hierarchical model, 
the calculation of the high-temperature coefficients is as difficult as the 
calculation of Feynman diagrams. For instance, the calculation of the fifth 
coefficient of the susceptibility has a difficulty comparable to the calcula- 
tion of two-loop Feynman diagrams. 

We insist on the fact that we have made no approximations in our 
numerical calculations and that the results presented are exact up to 



Numerical Study of Hierarchical Ising Model 625 

roundoff errors. We have analyzed these errors and found that they do not 
affect our conclusions. The fact that we were able to reproduce accurately 
well-understood analytical results such as the scaling laws at the critical 
temperature and the high-temperature behavior of the susceptibility seems 
to rule out errors in implementing Eq. (2.4) numerically. 

We have not reproduced accurately the value of the critical exponent 
), calculated with the epsilon expansion, even when the fit of the power law 
is restricted to intervals closer to tic. Even after 17 iterations of (2.4), which 
corresponds to the integration of 131,072 spins, the power behavior of the 
susceptibility stays closer to the high-temperature behavior than to the 
predictions of the RG analysis. The most plausible explanation is provided 
by the RG analysis itself, which suggests that we need more iterations. This 
can only be achieved at the present time by using approximate algorithms, 
which could be tested using the exact results presented here. Another 
possibility that might be considered is the existence of another fixed point 
with different critical indices; however, we are not aware of any result 
suggesting (or ruling out) this situation. 
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